What is the value of x in this figure?
143√
282√
28
283√

Answer:
Third option: 28
Step-by-step explanation:
You need to remember the following identity:
[tex]sin\alpha=\frac{opposite}{hypotenuse}[/tex]
In the right triangle shown in the figure, you can identify:
[tex]\alpha=30\°\\opposite=14\\hypotenuse=x[/tex]
Then, you need to substitute the corresponding values into [tex]sin\alpha=\frac{opposite}{hypotenuse}[/tex]:
[tex]sin(30\°)=\frac{14}{x}[/tex]
Now, you can solve for "x":
[tex]xsin(30\°)=14\\\\x=\frac{14}{sin(30\°)}\\\\x=28[/tex]
Answer:
The value of x is 28 units
Step-by-step explanation:
Given a right angled triangle with one side 14 units and one angle 30°
we have to find the value of x
By trigonometric ratios
[tex]\sin \theta=\frac{Perpendicular}{Hypotenuse}[/tex]
[tex]\sin 30^{\circ}=\frac{14}{x}[/tex]
[tex]\frac{1}{2}=\frac{14}{x}[/tex]
[tex]x=14\times 2=28 units[/tex]
Hence, the value of x is 28 units.
Option C is correct