Respuesta :
Answer:
Choice a. 1 kg, assuming that all other forces on the object (if any) are balanced.
Explanation:
By Newton's Second Law,
[tex]\displaystyle a = \frac{\Sigma F}{m}[/tex],
where
- [tex]a[/tex] is the acceleration of the object in [tex]\text{m}\cdot\text{s}^{-2}[/tex],
- [tex]\Sigma F[/tex] is the net force on the object in Newtons, and
- [tex]m[/tex] is the mass of the object in kilograms.
As a result,
[tex]\displaystyle m = \frac{\Sigma F}{a}[/tex].
Assume that all other forces on this object are balanced. The net force on the object will be [tex]100\;\text{N}[/tex]. The net force is constant. Acceleration should also be constant and the same as the average acceleration in the two seconds.
What is the average acceleration of this object?
[tex]\displaystyle \begin{aligned}\text{Acceleration} &= \text{Average Acceleration}=\frac{\text{Change in Velocity}}{\text{Time Taken}}\end{aligned}[/tex].
[tex]\displaystyle {a} = \frac{200\;\text{m}\cdot\text{s}^{-1}}{2\;\text{s}}=100\;\text{m}\cdot\text{s}^{-2}[/tex].
Apply Newton's Second Law to find the mass of the object.
[tex]\displaystyle m = \frac{\Sigma F}{a} = \frac{100\;\text{N}}{100\;\text{m}\cdot\text{s}^{-2}} = 1\;\text{kg}[/tex].