Answer:
a. By Pythagorean Theorem: [tex]ET=\sqrt{113}[/tex]
b. By Distance Formula: [tex]ET=\sqrt{113}[/tex]
Step-by-step explanation:
The given rectangle has vertices R(-3,-4), E(-3, 4), C(4,4), and T(4-4).
The points have been plotted on the coordinate plane as shown in the attachment.
a. Using the Pythagoras Theorem;
[tex]ET^2=EC^2+CT^2[/tex]
We substitute the side lengths to obtain:
[tex]ET^2=7^2+8^2[/tex]
[tex]ET^2=49+64[/tex]
[tex]ET^2=113[/tex]
Take positive square root to obtain:
[tex]ET=\sqrt{113}[/tex]
b. The distance formula is given by:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
The endpoints of ET are at E(-3,4) and T(4,-4).
Using the distance formula;
[tex]ET=\sqrt{(4--3)^2+(-4-4)^2}[/tex]
[tex]ET=\sqrt{(7)^2+(-8)^2}[/tex]
[tex]ET=\sqrt{49+64}[/tex]
[tex]ET=\sqrt{113}[/tex]