Solve the given initial-value problem. the de is of the form dy dx = f(ax + by + c), which is given in (5) of section 2.5. dy dx = cos(x + y), y(0) = π 2

Respuesta :

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\cos(x+y)[/tex]

Let [tex]v=x+y[/tex], so that [tex]\dfrac{\mathrm dv}{\mathrm dx}-1=\dfrac{\mathrm dy}{\mathrm dx}[/tex]:

[tex]\dfrac{\mathrm dv}{\mathrm dx}=\cos v+1[/tex]

Now the ODE is separable, and we have

[tex]\dfrac{\mathrm dv}{1+\cos v}=\mathrm dx[/tex]

Integrating both sides gives

[tex]\displaystyle\int\frac{\mathrm dv}{1+\cos v}=\int\mathrm dx[/tex]

For the integral on the left, rewrite the integrand as

[tex]\dfrac1{1+\cos v}\cdot\dfrac{1-\cos v}{1-\cos v}=\dfrac{1-\cos v}{1-\cos^2v}=\csc^2v-\csc v\cot v[/tex]

Then

[tex]\displaystyle\int\frac{\mathrm dv}{1+\cos v}=-\cot v+\csc v+C[/tex]

and so

[tex]\csc v-\cot v=x+C[/tex]

[tex]\csc(x+y)-\cot(x+y)=x+C[/tex]

Given that [tex]y(0)=\dfrac\pi2[/tex], we find

[tex]\csc\left(0+\dfrac\pi2\right)-\cot\left(0+\dfrac\pi2\right)=0+C\implies C=1[/tex]

so that the particular solution to this IVP is

[tex]\csc(x+y)-\cot(x+y)=x+1[/tex]