contestada

Which of the following is unnecessary when multiplying these polynomials?
(2x∧3 + 2x∧2 - 3x)(9x∧2-4x+5)

A.
use the distributive property
B.
use the multiplication property of exponents
C.
combine like terms
D.
find the GCF

Respuesta :

Answer:

Find the GCF

Step-by-step explanation:

When multiplying the following polynomials:

(2x^3 + 2x^2 - 3x)(9x^2-4x+5)

1.     First we need to use the distributive property:

(2x^3 + 2x^2 - 3x)(9x^2-4x+5) = 2x^3 * 9x^2  - 2x^3 * 4x  + 2x^3 * 5 + 2x^2 * 9x^2 - 2x^2 * 4x + 2x^2 * 5 - 3x * 9x^2 + 3x * 4x - 3x * 5.

2.   Second, we need to use the multiplication property of exponents:

(2x^3 + 2x^2 - 3x)(9x^2-4x+5) = 18x^5 - 8x^4 + 10x^3 + 18x^4 - 8x^3 + 10x^2 - 27x^3 + 12x^2 - 15x.

3. We need to combine like terms:

(2x^3 + 2x^2 - 3x)(9x^2-4x+5) = 18x^5 +10x^4 -25x^3 + 22x^2 - 15x.

We don't need to find the GCF.