Answer:
Find the GCF
Step-by-step explanation:
When multiplying the following polynomials:
(2x^3 + 2x^2 - 3x)(9x^2-4x+5)
1. First we need to use the distributive property:
(2x^3 + 2x^2 - 3x)(9x^2-4x+5) = 2x^3 * 9x^2 - 2x^3 * 4x + 2x^3 * 5 + 2x^2 * 9x^2 - 2x^2 * 4x + 2x^2 * 5 - 3x * 9x^2 + 3x * 4x - 3x * 5.
2. Second, we need to use the multiplication property of exponents:
(2x^3 + 2x^2 - 3x)(9x^2-4x+5) = 18x^5 - 8x^4 + 10x^3 + 18x^4 - 8x^3 + 10x^2 - 27x^3 + 12x^2 - 15x.
3. We need to combine like terms:
(2x^3 + 2x^2 - 3x)(9x^2-4x+5) = 18x^5 +10x^4 -25x^3 + 22x^2 - 15x.
We don't need to find the GCF.