Which system of equations can be used to find the roots of the equation 12x3-5x=2x2+x+6

Answer:
A [tex]\left\{\begin{array}{l}y=12x^3-5x\\ \\y=2x^2+x+6\end{array}\right.[/tex]
Step-by-step explanation:
The equation [tex]12x^3-5x=2x^2+x+6[/tex] have in both sides expressions [tex]12x^3-5x[/tex] and [tex]2x^2+x+6.[/tex]
Therefore, the system of two equations
[tex]\left\{\begin{array}{l}y=12x^3-5x\\ \\y=2x^2+x+6\end{array}\right.[/tex]
has the solution (x,y), where x is the solution of the equation above.
ANSWER
[tex]y = 12 {x}^{3} - 5x[/tex]
{
[tex]y= 2 {x}^{2} + x + 6[/tex]
EXPLANATION
The given equation is
[tex]12 {x}^{3} - 5x = 2 {x}^{2} + x + 6[/tex]
To find the system of equations, we just have to equate each side of the equation to y and form two different equations.
The left sides gives one equation,
[tex]y = 12 {x}^{3} - 5x[/tex]
The right side also gives,
[tex]y= 2 {x}^{2} + x + 6[/tex]
Hence the correct choice is A