Answer:
[tex]=\frac{3x^{5}(y-z)}{2(y+z)}[/tex]
Step-by-step explanation:
[tex]\frac{15x^3 (y-z)^2}{10x^{-2}(y^2-z^2)}[/tex] We need to solve this equation.
We know (x^2-y^2) = (x-y) (x+y)
Using the above formula, and taking 5 common:
[tex]=\frac{3x^3 (y-z)^2}{2x^{-2}(y^2-z^2)}\\=\frac{3x^{3+2} (y-z)^2}{2(y^2-z^2)}\\=\frac{3x^{5} (y-z)(y-z)}{2(y-z)(y+z)}\\=\frac{3x^{5}(y-z)}{2(y+z)}[/tex]