Respuesta :

-2/17 + 9i/17 fractions

Answer:

- [tex]\frac{2}{17}[/tex] + [tex]\frac{9}{17}[/tex] i

Step-by-step explanation:

Multiply the numerator/denominator by the complex conjugate of the denominator.

The conjugate of 1 - 4i is 1 + 4i

[tex]\frac{(2+i)(1+4i)}{(1-4i)(1+4i)}[/tex] ← expand factors

= [tex]\frac{2+9i+4i^2}{1-16i^2}[/tex] → i² = - 1

= [tex]\frac{2+9i-4}{1+16}[/tex]

= [tex]\frac{-2+9i}{17}[/tex]

= - [tex]\frac{2}{17}[/tex] + [tex]\frac{9}{17}[/tex] i