Respuesta :

Answer: [tex]x=11[/tex]

Step-by-step explanation:

Remembert that, by definition:

[tex]log_b(x)=y[/tex] → [tex]b^y=x[/tex]

Then, you can rewrite [tex]log_4(2x-6)=2[/tex] in exponential form:

[tex]4^2=2x-6[/tex]

Now you can solve for the variable "x":

Add 6 to both sides of the equation:

[tex]4^2+6=2x-6+6[/tex]

[tex]22=2x[/tex]

And finally you must divide both sides of the equation by 2, then:

[tex]\frac{22}{2}=\frac{2x}{2}\\\\x=11[/tex]