Respuesta :
Answer:
UVA: [tex]7.50\cdot 10^{14} Hz-9.46\cdot 10^{14} Hz[/tex]
UVB: [tex]9.46\cdot 10^{14} Hz-1.07\cdot 10^{15} Hz[/tex]
Explanation:
The formula to calculate the frequency of each electromagnetic wave is:
[tex]f=\frac{c}{\lambda}[/tex]
where
[tex]c=3\cdot 10^8 m/s[/tex] is the speed of light
[tex]\lambda[/tex] is the wavelength
For UVA:
- The minimum wavelength is
[tex]\lambda=317 nm=3.17\cdot 10^{-7} m[/tex]
so the frequency is
[tex]f=\frac{c}{\lambda}=\frac{3\cdot 10^8 m/s}{3.17\cdot 10^{-7} m}=9.46\cdot 10^{14} Hz[/tex]
- The maximum wavelength is
[tex]\lambda=400 nm=4.00\cdot 10^{-7} m[/tex]
so the frequency is
[tex]f=\frac{c}{\lambda}=\frac{3\cdot 10^8 m/s}{4.00\cdot 10^{-7} m}=7.50\cdot 10^{14} Hz[/tex]
For UVB:
- The minimum wavelength is
[tex]\lambda=280 nm=2.80\cdot 10^{-7} m[/tex]
so the frequency is
[tex]f=\frac{c}{\lambda}=\frac{3\cdot 10^8 m/s}{2.80\cdot 10^{-7} m}=1.07\cdot 10^{15} Hz[/tex]
- The maximum wavelength is
[tex]\lambda=317 nm=3.17\cdot 10^{-7} m[/tex]
so the frequency is
[tex]f=\frac{c}{\lambda}=\frac{3\cdot 10^8 m/s}{3.17\cdot 10^{-7} m}=9.46\cdot 10^{14} Hz[/tex]