Respuesta :

Answer:

The product of the monomials is 2304 [tex]x^{5}[/tex][tex]y^{6}[/tex]

Step-by-step explanation:

* Lets explain how to solve the problem

- We need to find the product of the monomials (8x 6y)² and

   [tex]x^{3}y^{4}[/tex]

- At first lets solve the power of the first monomial

- Because the power 2 is on the bracket then each element inside the

  bracket will take power 2

∵ (8x 6y)² = (8)²(x)²(6)²(y)²

∵ (8)² = 64

∵ (x)² = x²

∵ (6)² = 36

∵ (y)² = y²

∴ (8x 6y)² = [64x² × 36y²]

∵ 64 × 36 = 2304 x²y²

∴ The first monomial is 2304 x²y²

∵ The first monomial is 2304 x²y²

∵ The second monomial is [tex]x^{3}y^{4}[/tex]

- Lets find their product

- Remember in multiplication if two terms have same bases then we

  will add their powers

∵ [2304 x²y²] × [ [tex]x^{3}y^{4}[/tex] ] =

   2304 [ [tex]x^{2}*x^{3}[/tex] ] [ [tex]y^{2}*y^{4}[/tex] ]

∵ [tex]x^{2}*x^{3}[/tex] = [tex]x^{2+3}[/tex] = [tex]x^{5}[/tex]

∵ [tex]y^{2}*y^{4}[/tex] = [tex]y^{2+4}[/tex] = [tex]y^{6}[/tex]

∴ [2304 x²y²] × [ [tex]x^{3}y^{4}[/tex] ] = 2304 [tex]x^{5}[/tex][tex]y^{6}[/tex]

The product of the monomials is 2304 [tex]x^{5}[/tex][tex]y^{6}[/tex]