Respuesta :
Answer:
x = 1
Step-by-step explanation:
[tex]f(x)=3\sqrt{x+3}-6\\\\\text{Domain:}\ x+3\geq0\to x\geq-3\\\\\text{The zero}\to f(x)=0\\\\3\sqrt{x+3}-6=0\qquad\text{add 6 to both sides}\\\\3\sqrt{x+3}=6\qquad\text{divide both sides by 3}\\\\\sqrt{x+3}=2\iff x+3=2^2\\\\x+3=4\qquad\text{subtract 3 from both sides}\\\\x=1[/tex]
Answer:
x=1
Step-by-step explanation:
Given function,
[tex]f(x)=3\sqrt{x+3}-6[/tex]
Since, the zeroes of a function are those input values for which the function gives the output zero,
So, for the zeroes of f(x),
f(x) = 0
[tex]\implies 3\sqrt{x+3}-6=0[/tex]
[tex]3\sqrt{x+3}=6[/tex] ( Adding 6 on both sides )
[tex]\sqrt{x+3}=2[/tex] ( Dividing both sides by 3 )
[tex]x+3=4[/tex] ( Taking square of both sides )
[tex]x = 1[/tex] ( Subtracting 3 from both sides )
Hence, the zero of the given function is, x = 1.
First option is correct.