Respuesta :
P(5,2) = n! /(n-r)!
n = 5, r = 2:
= (5 x 4 x 3 x 2 x 1 ) / 3 x 2 x 1
Cancel out common factors:
= 5 x 4 = 20
The answer is 20.
Answer:
P (5,2) = 20
Step-by-step explanation:
First of all, we must understand two basic concepts:
A permutation is the variation of the order or position of the elements of an ordered set or a tuple.
The factorial function (symbol:!) Means that descending numbers are multiplied.
The formula to solve the permutation is:
[tex]\frac{n!}{(n-r)!}[/tex]
where "n" is the number of things you can choose, and you choose "r" from them (it cannot be repeated, order matters).
In the given case ...
P (n, r) = [tex]\frac{n!}{(n-r)!}[/tex]
Being n = 5, and r = 2
[tex]P(5,2)=\frac{5!}{(5-2)!}=\frac{5!}{3!}=\frac{5*4*3!}{3!}=5*4=20[/tex]
P (5,2) = 20
-------------------------------------------------- ----------------------------
I hope this helps!