Continuous and aligned fiber-reinforced composite with cross-sectional area of 340 mm2 (0.53 in.2) is subjected to a longitudinal load of 46500 N (10400 lbf). Assume Vf = 0.3, Vm = 0.7, Ef = 131 GPa and Em = 2.4 GPa. (a) Calculate the fiber-matrix load ratio. (b) Calculate the actual load carried by fiber phase. (c) Calculate the actual load carried by matrix phase. (d) Compute the magnitude of the stress on the fiber phase. (e) Compute the magnitude of the stress on the matrix phase. (f) What strain is expected by the composite?

Respuesta :

(a) 23.4

The fiber-to-matrix load ratio is given by

[tex]\frac{F_f}{F_m}=\frac{E_f V_f}{E_m V_m}[/tex]

where

[tex]E_f = 131 GPa[/tex] is the fiber elasticity module

[tex]E_m = 2.4 GPa[/tex] is the matrix elasticity module

[tex]V_f=0.3[/tex] is the fraction of volume of the fiber

[tex]V_m=0.7[/tex] is the fraction of volume of the matrix

Substituting,

[tex]\frac{F_f}{F_m}=\frac{(131 GPa)(0.3)}{(2.4 GPa)(0.7)}=23.4[/tex] (1)

(b) 44,594 N

The longitudinal load is

F = 46500 N

And it is sum of the loads carried by the fiber phase and the matrix phase:

[tex]F=F_f + F_m[/tex] (2)

We can rewrite (1) as

[tex]F_m = \frac{F_f}{23.4}[/tex]

And inserting this into (2):

[tex]F=F_f + \frac{F_f}{23.4}[/tex]

Solving the equation, we find the actual load carried by the fiber phase:

[tex]F=F_f (1+\frac{1}{23.4})\\F_f = \frac{F}{1+\frac{1}{23.4}}=\frac{46500 N}{1+\frac{1}{23.4}}=44,594 N[/tex]

(c) 1,906 N

Since we know that the longitudinal load is the sum of the loads carried by the fiber phase and the matrix phase:

[tex]F=F_f + F_m[/tex] (2)

Using

F = 46500 N

[tex]F_f = 44594 N[/tex]

We can immediately find the actual load carried by the matrix phase:

[tex]F_m = F-F_f = 46,500 N - 44,594 N=1,906 N[/tex]

(d) 437 MPa

The cross-sectional area of the fiber phase is

[tex]A_f = A V_f[/tex]

where

[tex]A=340 mm^2=340\cdot 10^{-6}m^2[/tex] is the total cross-sectional area

Substituting [tex]V_f=0.3[/tex], we have

[tex]A_f = (340\cdot 10^{-6} m^2)(0.3)=102\cdot 10^{-6} m^2[/tex]

And the magnitude of the stress on the fiber phase is

[tex]\sigma_f = \frac{F_f}{A_f}=\frac{44594 N}{102\cdot 10^{-6} m^2}=4.37\cdot 10^8 Pa = 437 MPa[/tex]

(e) 8.0 MPa

The cross-sectional area of the matrix phase is

[tex]A_m = A V_m[/tex]

where

[tex]A=340 mm^2=340\cdot 10^{-6}m^2[/tex] is the total cross-sectional area

Substituting [tex]V_m=0.7[/tex], we have

[tex]A_m = (340\cdot 10^{-6} m^2)(0.7)=238\cdot 10^{-6} m^2[/tex]

And the magnitude of the stress on the matrix phase is

[tex]\sigma_m = \frac{F_m}{A_m}=\frac{1906 N}{238\cdot 10^{-6} m^2}=8.0\cdot 10^6 Pa = 8.0 MPa[/tex]

(f) [tex]3.34\cdot 10^{-3}[/tex]

The longitudinal modulus of elasticity is

[tex]E = E_f V_f + E_m V_m = (131 GPa)(0.3)+(2.4 GPa)(0.7)=41.0 Gpa[/tex]

While the total stress experienced by the composite is

[tex]\sigma = \frac{F}{A}=\frac{46500 N}{340\cdot 10^{-6}m^2}=1.37\cdot 10^8 Pa = 0.137 GPa[/tex]

So, the strain experienced by the composite is

[tex]\epsilon=\frac{\sigma}{E}=\frac{0.137 GPa}{41.0 GPa}=3.34\cdot 10^{-3}[/tex]