A triangle is graphed in the coordinate plane. The vertices of the triangle have coordinates (–3, 1), (1, 1), and (1, –2). What is the perimeter of the triangle?

Respuesta :

Answer:

The perimeter of the triangle is [tex]12\ units[/tex]

Step-by-step explanation:

Let

[tex]A(-3,1),B(1,1),C(1,-2)[/tex]

we know that

The perimeter of triangle is equal to

[tex]P=AB+BC+AC[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance AB

[tex]A(-3,1),B(1,1)[/tex]

substitute in the formula

[tex]AB=\sqrt{(1-1)^{2}+(1+3)^{2}}[/tex]

[tex]AB=\sqrt{(0)^{2}+(4)^{2}}[/tex]

[tex]AB=4\ units[/tex]

step 2

Find the distance BC

[tex]B(1,1),C(1,-2)[/tex]

substitute in the formula

[tex]BC=\sqrt{(-2-1)^{2}+(1-1)^{2}}[/tex]

[tex]BC=\sqrt{(-3)^{2}+(0)^{2}}[/tex]

[tex]BC=3\ units[/tex]

step 3

Find the distance AC

[tex]A(-3,1),C(1,-2)[/tex]

substitute in the formula

[tex]AC=\sqrt{(-2-1)^{2}+(1+3)^{2}}[/tex]

[tex]AC=\sqrt{(-3)^{2}+(4)^{2}}[/tex]

[tex]AC=5\ units[/tex]

step 4

Find the perimeter

[tex]P=AB+BC+AC[/tex]

substitute the values

[tex]P=4+3+5=12\ units[/tex]