Answer:
The perimeter of the triangle is [tex]12\ units[/tex]
Step-by-step explanation:
Let
[tex]A(-3,1),B(1,1),C(1,-2)[/tex]
we know that
The perimeter of triangle is equal to
[tex]P=AB+BC+AC[/tex]
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
step 1
Find the distance AB
[tex]A(-3,1),B(1,1)[/tex]
substitute in the formula
[tex]AB=\sqrt{(1-1)^{2}+(1+3)^{2}}[/tex]
[tex]AB=\sqrt{(0)^{2}+(4)^{2}}[/tex]
[tex]AB=4\ units[/tex]
step 2
Find the distance BC
[tex]B(1,1),C(1,-2)[/tex]
substitute in the formula
[tex]BC=\sqrt{(-2-1)^{2}+(1-1)^{2}}[/tex]
[tex]BC=\sqrt{(-3)^{2}+(0)^{2}}[/tex]
[tex]BC=3\ units[/tex]
step 3
Find the distance AC
[tex]A(-3,1),C(1,-2)[/tex]
substitute in the formula
[tex]AC=\sqrt{(-2-1)^{2}+(1+3)^{2}}[/tex]
[tex]AC=\sqrt{(-3)^{2}+(4)^{2}}[/tex]
[tex]AC=5\ units[/tex]
step 4
Find the perimeter
[tex]P=AB+BC+AC[/tex]
substitute the values
[tex]P=4+3+5=12\ units[/tex]