Respuesta :
$22.75
Start by finding the cost of each topping. Subtract $17.50 minus $14.00 to find that adding 2 toppings costs $3.50. Now, divide $3.50 by 2 to find that the cost for adding only one topping is $1.75.
Then, multiply $1.75 by 5 to find how much it costs to add 5 toppings. You get $8.75.
Finally, add the cost of 5 toppings to the cost of a large pizza with no toppings. $14.00 plus $8.75 equals $22.75, so a large pizza with 5 toppings costs $22.75.
Answer: $22.75
Step-by-step explanation:
Given : The cost in dollars, y, of a large pizza with x toppings from Pat’s Pizzeria can be modeled by a linear function.
A linear function is given by :-
[tex]y=mx+c[/tex] (1)
, where m is slope (rate of change of y w.r.t x) and c is the y-intercept.
A large pizza with no toppings costs $14.00.
i.e. for x=0 , y= 14
Put theses values in (1) , we get
[tex]14=m(0)+c\\\Rightarrow\ c=14[/tex] (2)
A large pizza with 2 toppings costs $17.50.
i.e. for x=2 , y= 17.50
Put theses values in (1) , we get
[tex]17.50=m(2)+c[/tex]
Put value of c from (2)
[tex]17.50=2m+14\\\\[/tex]
Subtract 14 from both sides , we get
[tex]3.50=2m[/tex]
Divide both sides by 2 , we get
[tex]1.75=m[/tex]
Put m= 1.75 and c= 14 in (1) , the linear function representing cost of large pizza becomes [tex]y=1.75x+14[/tex]
At x= 5
[tex]y=1.75(5)+14=8.75+14=22.75[/tex]
Thus , the cost of a pizza with 5 toppings= $22.75