Respuesta :
Answer:
The complex number in the form of a + b i is 3/2 + i √3/2
Step-by-step explanation:
* Lets revise the complex number in Cartesian form and polar form
- The complex number in the Cartesian form is a + bi
-The complex number in the polar form is r(cosФ + i sinФ)
* Lets revise how we can find one from the other
- r² = a² + b²
- tanФ = b/a
* Now lets solve the problem
∵ z = 3(cos 60° + i sin 60°)
∴ r = 3 and Ф = 60°
∵ cos 60° = 1/2
∵ sin 60 = √3/2
- Substitute these values in z
∴ z = 3(1/2 + i √3/2) ⇒ open the bracket
∴ z = 3/2 + i √3/2
* The complex number in the form of a + b i is 3/2 + i √3/2
Answer:
3/2 + (3sqrt(3))/2 i
Step-by-step explanation:
On the unit circle cosine and sine 60 degrees can be found in the first quadrant. With the correct measures. Once located, (1/2, sqrt(3)/2), multiply those numbers by 3. Don't forget to include i.
3(1/2 + sqrt(3)/2 * i)
= 3/2 + (3sqrt(3))/2 i