Part A
given that P=(5,4), Q=(7,3), R=(8,6), and S=(4,1), find the component form of the vector PQ+4RS.
a.(18,19)
b.(-2,-6)
c.(-14,-21)
d.(-18,-19)

Part B
Use the information from part A to find the magnitude of the vector PQ+4RS.
a. 2sqrt10
b. 7sqrt13
c. sqrt35
d. 637

Part A given that P54 Q73 R86 and S41 find the component form of the vector PQ4RS a1819 b26 c1421 d1819 Part B Use the information from part A to find the magni class=

Respuesta :

Answer:

[tex]^{\to}_{PQ}+4^{\to}_{RS}=<\:-14,-21\:>\:[/tex]

[tex]|^{\to}_{PQ}+4^{\to}_{RS}|=7\sqrt{13}[/tex]

Step-by-step explanation:

The given points have coordinates; P=(5,4), Q=(7,3), R=(8,6), and S=(4,1).

[tex]^{\to}_{PQ}=^{\to}_{OQ}-^{\to}_{OP}[/tex]

[tex]^{\to}_{PQ}=<\:7,3\:>\:-\:<\:5,4\:>[/tex]

[tex]^{\to}_{PQ}=<\:7-5,3-4\:>\:[/tex]

[tex]^{\to}_{PQ}=<\:2,-1\:>\:[/tex]

[tex]^{\to}_{RS}=^{\to}_{OS}-^{\to}_{OR}[/tex]

[tex]^{\to}_{RS}=<\:4,1\:>\:-\:<\:8,6\:>[/tex]

[tex]^{\to}_{RS}=<\:4-8,1-6\:>\:[/tex]

[tex]^{\to}_{RS}=<\:-4,-5\:>\:[/tex]

[tex]^{\to}_{PQ}+4^{\to}_{RS}=<\:2,-1\:>\:+4\:<\:-4,-5\:>\:[/tex]

[tex]^{\to}_{PQ}+4^{\to}_{RS}=<\:2,-1\:>\:+\:<\:-16,-20\:>\:[/tex]

[tex]^{\to}_{PQ}+4^{\to}_{RS}=<\:2-16,-1-20\:>\:[/tex]

[tex]^{\to}_{PQ}+4^{\to}_{RS}=<\:-14,-21\:>\:[/tex]

The correct answer is C

The magnitude is given by:

[tex]|^{\to}_{PQ}+4^{\to}_{RS}|=\sqrt{x^2+y^2}[/tex]

[tex]|^{\to}_{PQ}+4^{\to}_{RS}|=\sqrt{(-14)^2+(-21)^2}[/tex]

[tex]|^{\to}_{PQ}+4^{\to}_{RS}|=\sqrt{196+441}[/tex]

[tex]|^{\to}_{PQ}+4^{\to}_{RS}|=\sqrt{637}[/tex]

[tex]|^{\to}_{PQ}+4^{\to}_{RS}|=7\sqrt{13}[/tex]

The correct answer is B