Monochromatic electromagnetic radiation with wavelength lambda from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. A: If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is 500 nm (visible light)? B: If the width of the central maximum is 6.00 mm , what is the slit width if the wavelength is 50.0 um (infrared radiation)? C: If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is 0.500 nm (x rays)?

Respuesta :

(a) [tex]4.2\cdot 10^{-4} m[/tex]

The formula for the diffraction from a single slit is:

[tex]y=\frac{n\lambda D}{d}[/tex]

where

y is distance of the nth-minimum from the centre

n is the order of the minimum

[tex]\lambda[/tex] is the wavelength

D is the distance of the screen from the slit

d is the slit width

In this problem:

[tex]D=2.50 m[/tex]

The width of the central maximum is 6.00 m; for n=1, y represents half the width of the central maximum, so

[tex]y=3.00 mm=0.003 m[/tex]

[tex]\lambda= 500 nm = 5\cdot 10^{-7} m[/tex]

Solving the equation for d, we find the slit width:

[tex]d=\frac{n\lambda D}{y}=\frac{(1)(5.0\cdot 10^{-7} m)(2.50 m)}{0.003 m}=4.2\cdot 10^{-4} m[/tex]

(b) 0.042 m

This time, the wavelength of the radiation is

[tex]\lambda=50.0 \mu m= 50.0\cdot 10^{-6} m[/tex]

and again the value of y is

[tex]y=3.00 mm=0.003 m[/tex]

so the slit width this time is

[tex]d=\frac{n\lambda D}{y}=\frac{(1)(50\cdot 10^{-6} m)(2.50 m)}{0.003 m}=0.042 m[/tex]

(c) [tex]4.2\cdot 10^{-7} m[/tex]

This time, the wavelength of the x-rays is

[tex]\lambda=0.500 nm= 5\cdot 10^{-10} m[/tex]

and again the value of y is

[tex]y=3.00 mm=0.003 m[/tex]

so the slit width this time is

[tex]d=\frac{n\lambda D}{y}=\frac{(1)(5\cdot 10^{-10} m)(2.50 m)}{0.003 m}=4.2\cdot 10^{-7} m[/tex]