Respuesta :

Answer:

[tex]x_2=x_1[/tex]

Step-by-step explanation:

We were given the slope formula;

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

This line is vertical if the denominator is zero.

That is when [tex]x_2-x-1=0[/tex]

This implies that;

[tex]x_2=x_1[/tex]

Justification;

When [tex]x_2=x_1[/tex], then, the line passes through;

[tex](x_1,y_1)[/tex]  and [tex](x_1,y_2)[/tex]

The slope now become

[tex]m=\frac{y_2-y_1}{x_1-x_1}=\frac{y_2-y_1}{0}[/tex]

The equation of the line is

[tex]y-y_1=\frac{y_2-y_1}{0}(x-x_1)[/tex]

This implies that;

[tex]0(y-y_1)=(y_2-y_1)(x-x_1)[/tex]

[tex]0=(y_2-y_1)(x-x_1)[/tex]

[tex]\frac{0}{y_2-y_1}=(x-x_1)[/tex]

[tex]0=(x-x_1)[/tex]

[tex]x=x_1[/tex]... This is the equation of a vertical line.