simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbar​, is found to be 106​, and the sample standard​ deviation, s, is found to be 10. ​(a) Construct a 95​% confidence interval about mu if the sample​ size, n, is 24. ​(b) Construct a 95​% confidence interval about mu if the sample​ size, n, is 15. ​(c) Construct a 70​% confidence interval about mu if the sample​ size, n, is 24. ​(d) Could we have computed the confidence intervals in parts​ (a)-(c) if the population had not been normally​ distributed?

Respuesta :

Answer:

Find attached for any solutions needed

Ver imagen patostats

Answer:

C.I: 95%            (101.777 < x < 110.223)   n = 24

C.I: 70%            (103.836 < x < 108.164)  n = 24

C.I: 95%            (101.622 < x < 110.378)   n = 15

Yes we can do parts through a-c if population had not been normally​ distributed. See explanation

Step-by-step explanation:

Given:

- Sample mean x_bar = 106

- Sample standard deviation s = 10

Find:

(a) Construct a 95​% confidence interval about mu if the sample​ size, n, is 24.

​(b) Construct a 95​% confidence interval about mu if the sample​ size, n, is 15.

​(c) Construct a 70​% confidence interval about mu if the sample​ size, n, is 24.

Solution:

- For sample size n = 24. n < 30 .... T-score

          DOF = n - 1 = 24 - 1 = 23

          a = 1 - 0.95 = 0.05 ,           t_a/2 = t_0.025 = 2.069

          C.I: ( x_bar - t_0.025*s/sqrt(n) < x < x_bar + t_0.025*s/sqrt(n) )

           ( 106 - 2.069*10/sqrt(24) < x < 106 + 2.069*10/sqrt(24) )    

            C.I: 95%            (101.777 < x < 110.223)

- For sample size n = 24. n < 30 .... T-score

          DOF = n - 1 = 24 - 1 = 23

          a = 1 - 0.70 = 0.30 ,           t_a/2 = t_0.15 = 1.060

          C.I: ( x_bar - t_0.15*s/sqrt(n) < x < x_bar + t_0.15*s/sqrt(n) )

           ( 106 - 1.06*10/sqrt(24) < x < 106 + 1.06*10/sqrt(24) )    

            C.I: 70%        (103.836 < x < 108.164)

- For sample size n = 15. n < 30 .... T-score

          DOF = n - 1 = 15 - 1 = 14

          a = 1 - 0.95 = 0.05 ,           t_a/2 = t_0.025 = 2.145

          C.I: ( x_bar - t_0.025*s/sqrt(n) < x < x_bar + t_0.025*s/sqrt(n) )

           ( 106 - 2.145*10/sqrt(24) < x < 106 + 2.145*10/sqrt(24) )    

            C.I: 95%            (101.622 < x < 110.378)

- The answer is yes.

First, in many cases, the sample is not normally distributed but you can use the central limit theorem to make a normal approximation and obtain an asymptotical confidence interval.

But you can also find exact confidence intervals even if the data is not normal. You need to find a pivotal quantity, i.e. a statistic whose distribution does not depend on the parameter of the underlying distribution.

or example let X1,…,Xn∼Exp(λ). We have λX¯∼Γ(n,n). Thus we have :

                            P( (u_α/2) /X¯ ≤ λ ≤ u_(1−α/2) / X¯) = 1 − α

where u_α/2 and u_1−α/2 are the quantities of Γ(n,n) with levels α/2 and 1−α/2.