What is the value of x in the figure below? Leave answer in simplest radical form.

Answer:
[tex]x=3\sqrt{2}\ units[/tex]
Step-by-step explanation:
we know that
The triangle of the figure is a 45°-90°-45°
therefore
[tex]cos(45\°)=\frac{x}{6}[/tex]
[tex]cos(45\°)=\frac{\sqrt{2}}{2}[/tex]
substitute
[tex]\frac{x}{6}=\frac{\sqrt{2}}{2}[/tex]
[tex]x=6\frac{\sqrt{2}}{2}\ units[/tex]
[tex]x=3\sqrt{2}\ units[/tex]