The table below shows the linear function f.
x: -6,-5,-4,-3,-2
f(x): 22,19,16,13,10
Determine the average rate of change of the given function over an interval [-5, -2].
A. -1/3
b.1/3
c.-3
D.3

Respuesta :

Answer:

The correct choice is C.

Step-by-step explanation:

The average rate of change of the given function over the interval [-5,-2] is the slope of the secant line connecting;

[tex](-5,f(-5))[/tex]

and

[tex](-2,f(-2))[/tex]

This implies that the average rate of change over [-5,-2]

[tex]=\frac{f(-2)-f(-5)}{-2--5}[/tex]

From the table; f(-2)=10 and f(-5)=19

We substitute and simplify to obtain;

Average rate of change

[tex]=\frac{10-19}{-2+5}[/tex]

[tex]=\frac{-9}{3}[/tex]

[tex]=-3[/tex]

Answer:

C. -3

Step-by-step explanation: