Respuesta :

Answer:

  7

Step-by-step explanation:

Squaring the first equation gives ...

  9a^2 + 2·3a·3/a + 9/a^2 = 25

The factors of "a" in the middle term cancel, leaving ...

  9a^2 +9/a^2 +18 = 25

Subtracting 18 answers the question:

  9a^2 +9/a^2 = 7

Answer:

The value for the given expression:

[tex]9 a^{2}+\frac{9}{a^{2}}=7[/tex]

Given:

[tex]3 a+\frac{3}{a}=5[/tex]

Step-by-step explanation:

First, we need to square both the sides of the given expression:

[tex]\Rightarrow\left(3 a+\frac{3}{a}\right)^{2}=25[/tex]

On applying the below algebraic identity:

[tex](a+b)^{2}=a^{2}+b^{2}+2 a b[/tex]

We get,

[tex]\Rightarrow(3 a)^{2}+\left(\frac{3}{a}\right)^{2}++2(3 a)\left(\frac{3}{a}\right)=25[/tex]

On squaring the terms:

[tex]\Rightarrow 9 a^{2}+\frac{9}{a^{2}}+2(3 a)\left(\frac{3}{a}\right)=25[/tex]

On cancelling the ‘a’ variable:

[tex]\Rightarrow 9 a^{2}+\frac{9}{a^{2}}+2(9)=25[/tex]

On multiplying the constants:

[tex]\Rightarrow 9 a^{2}+\frac{9}{a^{2}}+18=25[/tex]

On taking constant on one side and keeping variable on one side:

[tex]\Rightarrow 9 a^{2}+\frac{9}{a^{2}}=25-18[/tex]

On subtracting the constants, we get the final answer as:

[tex]\therefore 9 a^{2}+\frac{9}{a^{2}}=7[/tex]