contestada

Use the trigonometric subtraction formula for sine to verify this identity
[tex]cos(( \frac{\pi}{2} ) - x) = sinx[/tex]

Use the trigonometric subtraction formula for sine to verify this identity texcos fracpi2 x sinxtex class=

Respuesta :

The cosine difference formula yields

[tex]\cos(a-b)=\cos(a)\cos(b)+\sin(a)\sin(b)[/tex]

In your case,

[tex]a=\dfrac{\pi}{2},\quad b=x[/tex]

so the formula translates to

[tex]\cos\left(\dfrac{\pi}{2}-x\right)=\cos\left(\dfrac{\pi}{2}\right)\cos(x)+\sin\left(\dfrac{\pi}{2}\right)\sin(x)[/tex]

Since

[tex]\cos\left(\dfrac{\pi}{2}\right)=0,\quad \sin\left(\dfrac{\pi}{2}\right)=1[/tex]

the expression above becomes

[tex]0\cdot\cos(x)+1\cdot\sin(x)=\sin(x)[/tex]