Respuesta :
Answer:
a) 1.157 x 10⁻⁴ M.
b) 0.0032 M.
Explanation:
- Ag₂SO₄ is sparingly soluble salt in water which is dissociate according to:
Ag₂SO₄ ⇄ 2Ag⁺ + SO₄²⁻.
Ksp = [Ag⁺][SO₄²⁻] = (2s)²(s) = 1.5 x 10⁻⁵.
4s³ = 1.5 x 10⁻⁵.
s³ = 1.5 x 10⁻⁵/4 = 3.75 x 10⁻⁶.
∴ s = ∛(3.75 x 10⁻⁶) = 0.0155 M.
a) 0.36 M AgNO₃:
- The dissociation of Ag₂SO₄: Ag₂SO₄ ⇄ 2Ag⁺ + SO₄²⁻, will be accompanied by the ionization of AgNO₃:
AgNO₃ → Ag⁺ + NO₃⁻.
- So, the concentration of Ag⁺ will be that of AgNO₃ and Ag₂SO₄:
[Ag⁺] = (2s + 0.36)², s is neglected with respect to 0.36 M the concentration resulted from AgNO₃.
So, [Ag⁺] = (0.36)².
∴ Ksp = [Ag⁺][SO₄²⁻] = (0.36)²(s) = 1.5 x 10⁻⁵.
∴ s = 1.5 x 10⁻⁵/(0.36)² = 1.157 x 10⁻⁴ M.
b) 0.36 M Na₂SO₄:
- The dissociation of Ag₂SO₄: Ag₂SO₄ ⇄ 2Ag⁺ + SO₄²⁻, will be accompanied by the ionization of Na₂SO₄:
Na₂SO₄ → 2Na⁺ + SO₄²⁻.
- So, the concentration of SO₄²⁻ will be that of Na₂SO₄ and Ag₂SO₄:
[SO₄²⁻] = (s + 0.36), s is neglected with respect to 0.36 M the concentration resulted from Na₂SO₄.
So, [SO₄²⁻] = (0.36).
∴ Ksp = [Ag⁺][SO₄²⁻] = (2s)²(0.36) = 1.5 x 10⁻⁵.
∴ 4s² = 1.5 x 10⁻⁵/(0.36) = 4.166 x 10⁻⁵.
∴ s² = 4.166 x 10⁻⁵/4 = 1.042 x 10⁻⁵.
∴ s = √(1.042 x 10⁻⁵) = 0.0032 M.
The molar solubility of Ag₂SO₄ in 0.36 M AgNO₃ is 1.2 × 10⁻⁴ M. The molar solubility of Ag₂SO₄ in 0.36 M Na₂SO₄ is 3.2 × 10⁻³ M.
We want to calculate the molar solubility of Ag₂SO₄ (S) in different solutions. We will make ICE charts, considering the common ion provided by the other salt.
(a) 0.36 M AgNO₃
The initial concentration of Ag⁺ is 0.36 M.
Ag₂SO₄(s) ⇄ 2 Ag⁺ + SO₄²⁻(aq)
I 0.36 0
C +2S +S
E 0.36+2S S
The solubility product constant (Ksp) is:
[tex]Ksp = [Ag^{+}]^{2} [SO_4^{2-} ] = (0.36+2S)^{2} S\approx 0.36^{2} S\\\\S = \frac{Ksp}{0.36^{2} } = \frac{1.5 \times 10^{-5} }{0.36^{2} } = 1.2 \times 10^{-4} M[/tex]
(b) 0.36 M Na₂SO₄
The initial concentration of SO₄²⁻ is 0.36 M.
Ag₂SO₄(s) ⇄ 2 Ag⁺ + SO₄²⁻(aq)
I 0 0.36
C +2S +S
E 2S 0.36 + S
The solubility product constant (Ksp) is:
[tex]Ksp = [Ag^{+}]^{2} [SO_4^{2-} ] = (2S)^{2} (0.36+S) \approx 4S^{2} (0.36)\\\\S = \sqrt{\frac{Ksp}{1.44} } = \sqrt{\frac{1.5 \times 10^{-5} }{1.44} } = 3.2 \times 10^{-3}M[/tex]
The molar solubility of Ag₂SO₄ in 0.36 M AgNO₃ is 1.2 × 10⁻⁴ M. The molar solubility of Ag₂SO₄ in 0.36 M Na₂SO₄ is 3.2 × 10⁻³ M.
Learn more: https://brainly.com/question/1776962