contestada

Find the matrix a of the linear transformation t from ℝ2 to ℝ2 that rotates any vector through an angle of 150∘ in the clockwise direction.

Respuesta :

Answer:

[tex]A=\left[\begin{array}{cc}-\frac{\sqrt{3} }{2} &\frac{1}{2} \\-\frac{1}{2} &-\frac{\sqrt{3} }{2}\end{array}\right][/tex]

Step-by-step explanation:

A counterclockwise rotation through an angle [tex]\theta[/tex], can be described with the help of trigonometric functions.

The matrix: [tex]\left[\begin{array}{cc}\cos \theta&-\sin \theta\\\sin \theta&\cos \theta\end{array}\right][/tex] describes the counterclockwise rotation of the [tex]R^2[/tex] plane by an angle of [tex]\theta[/tex].

For clockwise rotation by an angle of [tex]\theta[/tex] about the origin, we replace [tex]\theta[/tex] by  [tex]-\theta[/tex] to obtain:

[tex]\left[\begin{array}{cc}\cos (-\theta)&-\sin (-\theta)\\\sin (-\theta)&\cos (-\theta)\end{array}\right][/tex]

Apply the odd and even properties of the sine and cosine functions to obtain:

[tex]\left[\begin{array}{cc}\cos (\theta)&\sin (\theta)\\-\sin (\theta)&\cos (\theta)\end{array}\right][/tex].

The matrix that describes a rotation of the [tex]R^2[/tex] plane around the origin of [tex]150\degree[/tex] clockwise is:

[tex]\left[\begin{array}{cc}\cos (150\degree)&\sin (150\degree)\\-\sin (150\degree)&\cos (150\degree)\end{array}\right]=\left[\begin{array}{cc}-\frac{\sqrt{3} }{2} &\frac{1}{2} \\-\frac{1}{2} &-\frac{\sqrt{3} }{2}\end{array}\right][/tex].

Therefore the required matrix is:

[tex]A=\left[\begin{array}{cc}-\frac{\sqrt{3} }{2} &\frac{1}{2} \\-\frac{1}{2} &-\frac{\sqrt{3} }{2}\end{array}\right][/tex]

The corresponding linear transformation is:

[tex]T(x,y)=(-\frac{\sqrt{3} }{2}x +\frac{1}{2}y,\frac{1}{2}x- \frac{\sqrt{3} }{2}y)[/tex]

The matrix of the linear transformation from ℝ2 to ℝ2 that rotates any vector through an angle of 150° in the clockwise direction.

is [tex]\left[\begin{array}{ccc}-\sqrt{3}/2 &1/2\\1/2&-\sqrt{3}/2 \\\end{array}\right][/tex].

What is a matrix for counter-clockwise for an angle [tex]\alpha[/tex]

Matrix for counter-clockwise direction for an angle [tex]\alpha[/tex] is

[tex]\left[\begin{array}{ccc}cos\alpha &-sina\\-sin\alpha &cos\alpha \\\end{array}\right][/tex]

Matrix for clockwise direction for an angle [tex]\alpha[/tex]

Put [tex]\alpha = -\alpha[/tex] in the above matrix

Above matrix becomes

[tex]\left[\begin{array}{ccc}cos\alpha &sina\\sin\alpha &cos\alpha \\\end{array}\right][/tex]

for [tex]\alpha =150[/tex]

Above matrix becomes

[tex]\left[\begin{array}{ccc}cos\ 150 &sin 150\\sin\ 150&cos\ 150 \\\end{array}\right][/tex]

[tex]\left[\begin{array}{ccc}-\sqrt{3}/2 &1/2\\1/2&-\sqrt{3}/2 \\\end{array}\right][/tex]

Therefore, the matrix of the linear transformation from ℝ2 to ℝ2 that rotates any vector through an angle of 150° in the clockwise direction.

is [tex]\left[\begin{array}{ccc}-\sqrt{3}/2 &1/2\\1/2&-\sqrt{3}/2 \\\end{array}\right][/tex].

To get more about matrix visit:

https://brainly.com/question/94574