Respuesta :

gmany

Answer:

[tex]\large\boxed{C.\ (25+25\sqrt3)\ in^2}[/tex]

Step-by-step explanation:

We have the square and four equilateral triangles.

The formula of an area of a squre:

[tex]A_S=a^2[/tex]

a - length of side

The formula of an area of an equilateral triangle:

[tex]A_T=\dfrac{a^2\sqrt3}{4}[/tex]

a - length of side

Clculate the areas:

SQURE:

[tex]A_S=x^2\ in^2[/tex]

TRIANGLE:

[tex]A_T=\dfrac{x^2\sqrt3}{4}\ in^2[/tex]

The SURFACE AREA of a square pyramid:

[tex]S.A.=A_S+4A_T\\\\S.A.=x^2+4\cdot\dfrac{x^2\sqrt3}{4}=x^2+x^2\sqrt3[/tex]

Put x = 5:

[tex]S.A.=5^2+5^2\sqrt3=(25+25\sqrt3)\ in^2[/tex]