Respuesta :

When scaling shapes, the perimeter scales with the same constant, while the area scales quadratically.

So, if your scale factor is 1/4, the perimeter of the new shape will be 1/4 of the original perimeter, while the area of the new shape will be 1/16 of the original area.

This implies

[tex]p(E'F'G'H') = \dfrac{1}{4}p(EFGH) = \dfrac{1}{4}\cdot 40 = 10[/tex]

[tex]A(E'F'G'H') = \dfrac{1}{16}A(EFGH) = \dfrac{1}{16}\cdot 96 = 6[/tex]