Respuesta :

ANSWER

Center: (20,12)

Radius:23

EXPLANATION

The given circle has equation:

[tex]{x}^{2} + {y}^{2} - 40x - 24y + 15 = 0[/tex]

We complete the square as follows:

[tex]{x}^{2} - 40x + {y}^{2} - 24y = - 15[/tex]

[tex]{x}^{2} - 40x + {( - 20)}^{2} + {y}^{2} - 24y + {( - 12)}^{2} = - 15+ {( - 20)}^{2}+ {( - 12)}^{2}[/tex]

[tex] {(x - 20)}^{2} + {(y - 12)}^{2} = - 15+ 400+ 144[/tex]

[tex] {(x - 20)}^{2} + {(y - 12)}^{2} = 529[/tex]

[tex]{(x - 20)}^{2} + {(y - 12)}^{2} = {23}^{2} [/tex]

Comparing this equation to:

[tex]{(x - h)}^{2} + {(y - k)}^{2} = {r}^{2} [/tex]

We have

[tex](h,k)=(20,12)[/tex]

representing the center and

[tex]r = 23[/tex]

being the radius.