Respuesta :
Answer:
[tex]h^{-1}(x)=-\frac{3}{2}x+9[/tex]
Step-by-step explanation:
To find inverse of a function, follow the steps below:
1. replace h(x) with y
2. Interchange x and y
3. Solve for the new y
4. Replace y to [tex]h^{-1}(x)[/tex] (this is the inverse function)
Step 1: y = -2/3x+6
Step 2: x = -2/3y+6
Step 3:
[tex]x=-\frac{2}{3}y+6\\\frac{2}{3}y=-x+6\\y=\frac{-x}{\frac{2}{3}}+\frac{6}{\frac{2}{3}}\\y=-\frac{3}{2}x+9[/tex]
Step 4:
[tex]y=-\frac{3}{2}x+9\\h^{-1}(x)=-\frac{3}{2}x+9[/tex]
This is the inverse function.
Answer:
[tex]x=-\frac{3}{2} x+9[/tex]
Step-by-step explanation:
We are given the following function and we are to find the inverse of this function:
[tex] h(x) = - \frac { 2 } { 3 } x + 6 [/tex]
For that, we will put the function equal to another variable [tex]y[/tex] and make [tex]x[/tex] the subject of the function.
[tex] y = - \frac { 2 } { 3 } x + 6 [/tex]
Making [tex]x[/tex] the subject:
[tex]y-6=-\frac{2}{3} x[/tex]
[tex]3(y-6)=-2x[/tex]
[tex]\frac{3y-18}{-2} =x[/tex]
[tex]x=-\frac{3}{2} x+9[/tex]
Therefore, the inverse h'(x) = [tex]x=-\frac{3}{2} x+9[/tex].