In circle S,diameter PN is drawn .If measurement arc MN=110 degrees and PS=10 then find the length of MN to the nearest tenth.Show how you found your answer

In circle Sdiameter PN is drawn If measurement arc MN110 degrees and PS10 then find the length of MN to the nearest tenthShow how you found your answer class=

Respuesta :

Answer:

[tex]MN=16.4\ units[/tex]

Step-by-step explanation:

step 1

Find PN

we know that

PN is a diameter

PS is a radius

[tex]PS=10\ units[/tex]

so

[tex]PN=2*PS=2*10=20\ units[/tex]

step 2

Find the measure of arc MP

[tex]arc\ MN+arc\ MP=180\°[/tex]

[tex]arc\ MN=110\°[/tex]

[tex]arc\ MP=180\°-110\°=70\°[/tex]

step 3

Find the measure of angle MNP

we know that

The inscribed angle measures half that of the arc comprising

[tex]<MNP=\frac{1}{2}(arc\ MP)[/tex]

substitute the value

[tex]<MNP=\frac{1}{2}(70\°)=35\°[/tex]

step 4

Find the measure of angle MPN

we know that

The inscribed angle measures half that of the arc comprising

[tex]<MPN=\frac{1}{2}(arc\ MN)[/tex]

substitute the value

[tex]<MNP=\frac{1}{2}(110\°)=55\°[/tex]

step 5

Find the measure of angle NMP

The sum of the internal angles of a triangle must be equal to 180 degrees

[tex]<NMP+55\°+35\°=180\°[/tex]

[tex]<NMP=90\°[/tex]

therefore

The triangle MNP is a right triangle

step 6

Find the length MN

In the right triangle MNP

[tex]sin(<MPN)=\frac{MN}{PN}[/tex]

substitute the values

[tex]sin(55\°)=\frac{MN}{20}[/tex]

[tex]MN=(20)sin(55\°)=16.4\ units[/tex]