Hello there!


Can I get some help with this calculus practice problem? I don't think my answer is right :)
Please show your work and details. Thanks a lot!

Hello there Can I get some help with this calculus practice problem I dont think my answer is right Please show your work and details Thanks a lot class=

Respuesta :

Answer:  144

Step-by-step explanation:

First, find the x-values where the equations intersect:

2x² = -2x² - 8x + 32

4x² + 8x - 32 = 0

4(x² + 2x - 8) = 0

 (x + 4)(x - 2) = 0

  x = -4  and  x = 2    (see graph to confirm these values)

Now, find the area under the curve:

[tex]\int\limits^{2}_{-4} [(-2x^2-8x+32)-(2x^2)]dx\\\\\\=\int\limits^{2}_{-4} (-4x^2-8x+32)dx\\\\\\=\bigg(-\dfrac{4}{3}x^3-\dfrac{8}{2}x^2+32x\bigg)\bigg|\limits^2_{-4}\\\\\\=\bigg(-\dfrac{4}{3}(2)^3-4(2)^2+32(2)\bigg)-\bigg(-\dfrac{4}{3}(-4)^3-4(-4)^2+32(-4)\bigg)\\\\\\=\bigg(-\dfrac{32}{3}-16+64\bigg)-\bigg(\dfrac{256}{3}-64-128\bigg)\\\\\\=\bigg(\dfrac{112}{3}\bigg)-\bigg(-\dfrac{320}{3}\bigg)\\\\\\=\dfrac{432}{3}\\\\\\=\large\boxed{144}[/tex]

Answer:  4.5

Step-by-step explanation:

First, find the x-values where the equations intersect:

x+3 = x² + 1

0 = x² - x - 2

0 = (x - 2)(x + 1)

x = 2   and    x = -1  (see graph to confirm these values)

Now find the area under the curve:

[tex]\int\limits^{2}_{-1} [(x+3)-(x^2+1)]dx\\\\\\=\int\limits^{2}_{-1} (-x^2+x+2)dx\\\\\\=\bigg(-\dfrac{x^3}{3}+\dfrac{x^2}{2}+2x\bigg)\bigg|\limits^2_{-1}\\\\\\=\bigg(-\dfrac{2^3}{3}+\dfrac{2^2}{2}+2(2)\bigg)-\bigg(-\dfrac{(-1)^3}{3}+\dfrac{(-1)^2}{2}+2(-1)\bigg)\\\\\\=\bigg(-\dfrac{8}{3}+2+4\bigg)-\bigg(\dfrac{1}{3}+\dfrac{1}{2}-2\bigg)\\\\\\=\bigg(\dfrac{10}{3}\bigg)-\bigg(-\dfrac{7}{6}\bigg)\\\\\\=\dfrac{9}{2}\\\\\\=\large\boxed{4.5}[/tex]

Ver imagen tramserran
Ver imagen tramserran