What are the angles of △ABC with side lengths a=27, b=11, and c=19?

Select the correct answer below:

A=126.2∘, B=19.2∘, and C=34.6∘

A=126.2∘, B=21.2∘, and C=32.6∘

A=126.2∘, B=17.2∘, and C=36.6∘

A=123.2∘, B=19.2∘, and C=37.6∘

What are the angles of ABC with side lengths a27 b11 and c19 Select the correct answer below A1262 B192 and C346 A1262 B212 and C326 A1262 B172 and C366 A1232 B class=

Respuesta :

The first one is correct

A=126.2∘, B=19.2∘, and C=34.6∘

Sorry that the names for the angles are mixed up and its in german but they are correct

Ver imagen xxmastr123

Answer:

The correct answer option is A) A=126.2°, B=19.2°, and C=34.6°.

Step-by-step explanation:

Using cosine rule to find angle A:

[tex]a^2=b^2+c^2-2bc cos A[/tex]

Substituting the given values in the formula to get:

[tex]27^2=11^2+19^2-2(11)(19) cos A[/tex]

[tex]729-482=-418cos A[/tex]

[tex]A=cos'(-0.590)[/tex]

A = 126.2°

Now that we have found one angle, we can use sine rule to find the other two angles.

[tex]\frac{SinA}{a} =\frac{Sin B}{b}[/tex]

[tex]\frac{Sin 126.2}{27} =\frac{Sin B}{11}[/tex]

[tex]B=sin'(0.328)[/tex]

B = 19.2°

[tex]\frac{SinB}{b} =\frac{Sin C}{c}[/tex]

[tex]\frac{Sin 19.2}{11} =\frac{Sin C}{19}[/tex]

[tex]C=sin'(0.567)[/tex]

C = 34.6°

Therefore, the correct answer option is A) A=126.2°, B=19.2°, and C=34.6°.