Answer:
Part a) The length of the mat is [tex]12\ ft[/tex]
Part b) The area of the mat is [tex]72\ ft^{2}[/tex]
Step-by-step explanation:
step 1
Find the length
Let
L-----> the length of the rectangle
W---> the width of the rectangle
we know that
The perimeter of rectangle is
[tex]P=2(L+W)[/tex]
[tex]P=36\ ft[/tex]
so
[tex]36=2(L+W)[/tex]
[tex]18=(L+W)[/tex] ----> equation A
[tex]L=2W[/tex] -----> equation B
substitute equation B in equation A
[tex]18=(2W+W)[/tex]
solve for W
[tex]18=3W[/tex]
[tex]W=18/3=6\ ft[/tex]
Find the value of L
[tex]L=2(6)=12\ ft[/tex]
step 2
Find the area
The area of rectangle is equal to
[tex]A=LW[/tex]
substitute the values
[tex]A=(12)(6)=72\ ft^{2}[/tex]