Find the product.

3y 2 z(2y 2 z + 4yz - y + z)

A 4y 6z 2 + 13y 3z 12 - 3y 2z 2 - 3yz

B 6y 4z 2 + 12y 3z 2 - 3y 3z + 3y 2z 2

C 6y 2z 4 - 12y 2z 3 + 3yz 3 - 3y 2z 2

D 3y 4z 2 + 3y 3z 2 - 6y 3z - 4

Respuesta :

Answer :

[tex]6{y}^{4} {z}^{2} + 12 {y}^{3} {z}^{2}-3 {y}^{3} {z}+3 {y}^{2} {z}^{2}[/tex]

Step-by-step explanation :

To find the product of

[tex]3 {y}^{2} z(2 {y}^{2} z + 4yz - y + z)[/tex]

First we expand the bracket ,

it implies that, we use the expression outside the bracket to multiply individual expressions inside the bracket.

Hence

[tex] 3 {y}^{2} z(2 {y}^{2} z + 4yz - y + z)[/tex]

[tex] = 3 {y}^{2} z(2 {y}^{2} z) + 3 {y}^{2} z(4yz) - 3 {y}^{2} z(y )+3 {y}^{2} z( z)[/tex]

we now apply the law of indices

[tex] {a}^{m} \times {a}^{n} = {a}^{m+n}[/tex]

meaning, when you are multiplying two expressions with the same bases , repeat one of the bases and add the exponents.

Then, simplify to obtain

[tex] = 6{y}^{4} {z}^{2} + 12 {y}^{3} {z}^{2}-3{y}^{3} {z}+3 {y}^{2} {z}^{2}[/tex]