Respuesta :
Answer:
[H₃O⁺] = 1.4 × 10⁻⁹ M.
Explanation:
NH₄Cl is a salt that dissolves well in water. The 2.5 M NH₄Cl will give an initial NH₄⁺ concentration of 2.5 M.
NH₃ is a weak base. It combines with water to produce NH₄⁺ and OH⁻. The opposite process can also take place. NH₄⁺ combines with OH⁻ to produce NH₃ and H₂O. The final H₃O⁺ concentration can be found from the OH⁻ concentration. What will be the final OH⁻ concentration?
Let the increase in OH⁻ concentration be x. The initial OH⁻ concentration at room temperature is 10⁻⁷ M.
Construct a RICE table for the equilibrium between NH₃ and NH₄⁺:
[tex]\begin{array}{c|ccccccc}\text{R}&\text{NH}_3 &+&\text{H}_2\text{O}&\rightleftharpoons &{\text{NH}_4}^{+}&+&\text{OH}^{-}\\\text{I}&1.0&&&&2.5&&1.0\times 10^{-7}\\\text{C}& -x &&&& +x &&+x\\\text{E} &1.0 - x &&&&2.5+x&&1.0\times 10^{-7}+x\end{array}[/tex].
The [tex]\text{K}_b[/tex] value for ammonia is small. The value of x will be so small that at equilibrium, [tex]1.0 - x \approx 1.0[/tex] and [tex]2.5- x \approx 2.5[/tex].
[tex]\displaystyle \text{K}_b = \frac{[{\text{NH}_4}^{+}]\cdot [{\text{OH}}^{-}]}{[\text{NH}_3]} \approx \frac{2.5\;(x + 1.0\times 10^{-7})}{1.0}[/tex].
[tex]\displaystyle \frac{2.5\;(x + 1.0\times 10^{-7})}{1.0} = 1.8\times 10^{-5}[/tex].
[tex]\displaystyle [\text{OH}^{-}] = x+1.0\times 10^{-7} = 1.8\times 10^{-5} /\left(\frac{2.5}{1.0}\right) = 7.2\times 10^{-6}\;\text{mol}\cdot\text{L}^{-}[/tex].
Again, [tex]\text{K}_w = 1.0\times 10^{-14}[/tex] at room temperature.
[tex]\displaystyle [\text{H}_3\text{O}^{+}] = \frac{\text{K}_w}{[\text{OH}^{-}]}=\frac{1.0\times 10^{-14}}{7.2\times 10^{-6}} = 1.4\times 10^{-9} \;\text{mol}\cdot\text{L}^{-1}[/tex]