Respuesta :

Answer:

The solution is  192.83 ft²

Step-by-step explanation:

We need to find out the shaded region of the provided figure

Area of sector calculated as [tex]S=\frac{\theta}{360} \pi r^{2}[/tex] and

Area of triangle is calculated as [tex]A=\frac{1}{2} r^{2} \sin \theta[/tex]

Area of circle is calculated as [tex]C=\pi r^{2}[/tex]

Where r is radius

so,

Area of sector is [tex]S=\frac{\theta}{360} \pi r^{2}[/tex]

[tex]S=\frac{100}{360} 3.14 (8.35)^{2}[/tex]

[tex]S=\frac{5}{18} 3.14 (8.35)^{2}[/tex]

[tex]S=\frac{5}{18} 218.92[/tex]

[tex]S=60.81[/tex]

Area of triangle is [tex]A=\frac{1}{2} r^{2} \sin \theta[/tex]

[tex]A=\frac{1}{2} (8.35)^{2} \sin 100[/tex]

[tex]A=\frac{1}{2}68.32[/tex]

[tex]A=34.16[/tex]

Area of circle is  [tex]C=\pi r^{2}[/tex]

[tex]C=3.14 (8.35)^{2}[/tex]

[tex]C=3.14 \times 69.72[/tex]

[tex]C=218.92[/tex]

Area of segment = area of sector - area of triangle

                             =   60.81 - 34.16

                             =    26.09 ft²

Area of shaded region = area of circle - Area of segment

                                       = 218.92 - 26.09

                                       = 192.83 ft²

Therefore, the solution is  192.83 ft²

Answer:

The answer above is wrong ⚠️ caution

Step-by-step explanation:

The real answer is 192.5

Fill in 192.5