Respuesta :

Answer:

C. f(x) = (x – 5)(x + 1)

Step-by-step explanation:

Answer:

The correct option is C)  function (x-5)(x+1) has vertex (2,-9).

Step-by-step explanation:

The vertex of an up down facing parabola of the form y=ax²+bx+c is [tex]x_v=-\frac{b}{2a}[/tex]

option A) -(x-3)²

Rewrite [tex]y=-\left(x-3\right)^2[/tex] in the form [tex]y=ax^{2}+bx+c[/tex]

Expand [tex]-\left(x-3\right)^{2}[/tex]

[tex]\left(x^{2}-6x+9\right)[/tex]

The parabola parameters are: a = - 1, b = 6, c = - 9

[tex]x_v=-\frac{b}{2a}[/tex]

[tex]x_v=-\frac{6}{2\left(-1\right)}[/tex]

simplify, 3

Plugin [tex]x_v = 3[/tex] to find the [tex]y_v[/tex] value

[tex]y_v=-3^{2}+6\times 3 -9[/tex]

[tex]y_v=-0[/tex]

If a<0, then the vertex is a maximum value.

If a>0, then the vertex is a minimum value.

since, a = - 1

Maximum (3,0)

option B) (x+8)²

Rewrite [tex]y=\left(x+8\right)^{2}[/tex] in the form [tex]y=ax^{2}+bx+c[/tex]

Expand [tex]\left(x+8\right)^{2}[/tex]

[tex]\left(x^{2}+16x+64\right)[/tex]

The parabola parameters are: a = 1, b = 16, c = 64

[tex]x_v=-\frac{b}{2a}[/tex]

[tex]x_v=-\frac{16}{2\left(1\right)}[/tex]

simplify, - 8

Plugin [tex]x_v = -8 [/tex] to find the [tex]y_v[/tex] value

[tex]y_v=-8^{2}+16(-8)+64[/tex]

[tex]y_v=-0[/tex]

If a<0, then the vertex is a maximum value.

If a>0, then the vertex is a minimum value.

since, a =  1

Minimum (-8,0)

option C) (x-5)(x+1)

Rewrite [tex]y=(x-5)(x+1)[/tex] in the form [tex]y=ax^{2}+bx+c[/tex]

Expand [tex]y=(x-5)(x+1)[/tex]

[tex]\left(x^{2}-4x-5\right)[/tex]

The parabola parameters are: a = 1, b = -4, c = -5

[tex]x_v=-\frac{b}{2a}[/tex]

[tex]x_v=-\frac{-4}{2\left(1\right)}[/tex]

simplify, 2

Plugin [tex]x_v = 2 [/tex] to find the [tex]y_v[/tex] value

[tex]y_v=2^{2}-4(2)-5[/tex]

[tex]y_v=-9[/tex]

If a<0, then the vertex is a maximum value.

If a>0, then the vertex is a minimum value.

since, a =  1

Minimum (2,-9)

Hence, the correct option is C)  function (x-5)(x+1) has vertex (2,-9).