Respuesta :

Answer:

The length of shortest side is [tex]5\ units[/tex]

Step-by-step explanation:

Let

[tex]A(-3,-2),B(1,6),C(5,3)[/tex]

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance AB

[tex]A(-3,-2),B(1,6)[/tex]

substitute in the formula

[tex]AB=\sqrt{(6+2)^{2}+(1+3)^{2}}[/tex]

[tex]AB=\sqrt{(8)^{2}+(4)^{2}}[/tex]

[tex]AB=\sqrt{80}=8.94\ units[/tex]

step 2

Find the distance BC

[tex]B(1,6),C(5,3)[/tex]

substitute in the formula

[tex]BC=\sqrt{(3-6)^{2}+(5-1)^{2}}[/tex]

[tex]BC=\sqrt{(-3)^{2}+(4)^{2}}[/tex]

[tex]BC=\sqrt{25}=5\ units[/tex]

step 3

Find the distance AC

[tex]A(-3,-2),C(5,3)[/tex]

substitute in the formula

[tex]AC=\sqrt{(3+2)^{2}+(5+3)^{2}}[/tex]

[tex]AC=\sqrt{(5)^{2}+(8)^{2}}[/tex]

[tex]AC=\sqrt{89}=9.43\ units[/tex]

Compare the length sides

The length of shortest side is [tex]5\ units[/tex]