Respuesta :

frika

Answer:

Vertex - (4,-5)

Focus (4,2)

Directrix y=-12

Step-by-step explanation:

The equation [tex]y=\dfrac{1}{28}(x-4)^2-5[/tex] of the parabola shows that its vertex is at point (4,-5). Multiply the equation by 28:

[tex]28y=(x-4)^2-140\Rightarrow (x-4)^2=28y+140,\\ \\(x-4)^2=28(y+5).[/tex]

The parameter p of the parabola is

[tex]2p=28\Rightarrow p=14.[/tex]

The coordinates of the focus will be

[tex]\left(4,-5+\dfrac{p}{2}\right)=\left(4,-5+\dfrac{14}{2}\right)=\left(4,2\right).[/tex]

The directrix has the equation

[tex]y=-5-\dfrac{p}{2}\Rightarrow y=-5-7,\ y=-12.[/tex]

The answer is:

vertex: (4,-5); focus: (4,2); directrix: y=-12