Respuesta :
For this case we have that if two lines are parallel, then their slopes are equal.
[tex]m_ {1} = m_ {2}[/tex]
We have the line given by:
[tex]2x + 5y = 10[/tex]
Rewriting:[tex]y = \frac {10-2x} {5}\\y = - \frac {2} {5} x + 2[/tex]
So, the slope is given by:
[tex]- \frac {2} {5}[/tex]
So, we have the following equation:
[tex]y = - \frac {2} {5} x + b[/tex]
We substitute the given point to find the cut point:
[tex]1 = - \frac {2} {5} (- 5) + b\\1 = 2 + b\\b = -1[/tex]
So, we have:
[tex]y = - \frac {2} {5} x-1[/tex]
Rewriting:
[tex]y + 1 = - \frac {2} {5} x\\5y + 5 = -2x\\2x + 5y = -5[/tex]
Answer:
Option B