Respuesta :

gmany

Answer:

[tex]\large\boxed{A=(120+32\pi)cm^2}[/tex]

Step-by-step explanation:

Look at the picture.

We have the half of circle and a triangle.

The fromula of an area of a circle:

[tex]A_O=\pi r^2[/tex]

r - radius

We have r = 8cm. Substitute:

[tex]A_O=\pi(8)^2=64\pi\ cm^2[/tex]

The formula of an area of a triangle:

[tex]A_\triangle=\dfrac{bh}{2}[/tex]

b- base

h - height

We have b = 8cm + 8cm = 16cm and h = 15cm. Substitute:

[tex]A_\triangle=\dfrac{(16)(15)}{2}=(8)(15)=120\ cm^2[/tex]

The area of the figure:

[tex]A=\dfrac{1}{2}A_O+A_\triangle[/tex]

Substitute:

[tex]A=\dfrac{1}{2}(64\pi)+120=32\pi+120=(120+32\pi)cm^2[/tex]

Ver imagen gmany