Respuesta :

Answer:

[tex]L = 210[/tex],  [tex]W=200[/tex]

[tex]W=210[/tex],  [tex]L = 200[/tex]

Step-by-step explanation:

By definition, the perimeter of a rectangle is:

[tex]P = 2L + 2W[/tex]

Where:

P is the perimeter, L is the length and W is the width

Also, the area of a rectangle is:

[tex]A = LW[/tex]

Where L is the length of the base and W is the width.

We know that for this rectangle:

[tex]P = 2L + 2W = 820 ft\\\\A = LW = 42,000 ft ^ 2[/tex]

Now we have two equations and two unknowns (L and W)

Then we solve the system.

[tex]L = \frac{42,000}{W}[/tex]

Now we substitute this relation in the perimeter equation.

[tex]2(\frac{42,000}{W}) + 2W = 820\\\\\frac{42,000}{W} + W = 410\\\\42000 + W ^ 2 = 410W\\\\W ^ 2 -410W + 42000 = 0\\\\(W - 210)(W - 200) = 0\\\\W = 210\\\\W = 200[/tex]

Then for W=210:

[tex]L = \frac{42000}{W}\\\\L = \frac{42000}{210}\\\\L = 200[/tex]

And for W=200

[tex]L = \frac{42000}{200}\\\\L = 210[/tex]

Answer

[tex]210 \: by \: 200[/tex]

EXPLANATION

Let l and w be the dimensions of the parking lot

The perimeter of the parking lot is given by

[tex]p =2( l + w)[/tex]

This implies that

[tex]820 = 2(l + w)[/tex]

Dividing both sides by 2

[tex]l + w = \frac{820}{2} [/tex]

[tex]l + w = 410......eq1[/tex]

Area of the of the parking lot is given by

[tex]l \times w = 42000...........eqn2[/tex]

putting eqn 1 into ran 2

[tex]410l - {l}^{2} = 42000[/tex]

[tex] 0= {l}^{2} - 410l + 42000[/tex]

[tex] {l}^{2} - 210l - 200l+ 42000 = 0[/tex]

[tex] ( {l}^{2} - 210l )-1( 200l - 42000 )= 0[/tex]

[tex]l ( {l} - 210l )- 200(l - 210)= 0[/tex]

[tex]( {l} - 210l )(l - 200)= 0[/tex]

[tex]l = 210 \: or \: 200[/tex]

if

[tex]l = 200[/tex]

then

[tex]w = 210[/tex]

and also if

[tex]l = 210[/tex]

then

[tex]w = 200[/tex]

Hence the dimensions of the parking lot is

[tex]210 \: by \: 200[/tex]