Respuesta :

ANSWER

The first choice is correct.

EXPLANATION

We want to use the unit circle to determine the sine, cosine and tangent of the angle,

[tex] \alpha = - \frac{3\pi}{6} [/tex]

This simplifies to

[tex]\alpha = - \frac{\pi}{2} [/tex]

This is a quadrantal angle. This angle intercepts the unit circle at, (0,-1).

We know that on the unit circle, the x-coordinate is given by;

[tex]x = \cos( \alpha ) [/tex]

Hence

[tex] \cos( \alpha ) = 0[/tex]

and the y-coordinate is given by;

[tex] y = \sin( \alpha ) [/tex]

This implies that

[tex] \sin( \alpha ) = - 1[/tex]

The tangent is

[tex] \tan( \alpha ) = \frac{ \sin( \alpha ) }{ \cos( \alpha ) } = \frac{ - 1}{0} = undefined[/tex]

The correct choice is A.