Set
[tex]x=\rho\cos\theta\sin\varphi[/tex]
[tex]y=\rho\sin\theta\sin\varphi[/tex]
[tex]z=\rho\cos\varphi[/tex]
so that the volume element is
[tex]\mathrm dV=\mathrm dx\,\mathrm dy\,\mathrm dz=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
The integral is then
[tex]\displaystyle\iiint_Exyz\,\mathrm dV=\int_{\varphi=0}^{\varphi=\pi/3}\int_{\theta=0}^{\theta=2\pi}\int_{\rho=4}^{\rho=6}\rho^5\cos\theta\sin\theta\sin^3\varphi\cos\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\rho[/tex]
[tex]=\displaystyle\left(\int_0^{\pi/3}\sin^3\varphi\cos\varphi\,\mathrm d\varphi\right)\underbrace{\left(\int_0^{2\pi}\cos\theta\sin\theta\,\mathrm d\theta\right)}_0\left(\int_4^6\rho^5\,\mathrm d\rho\right)[/tex]
and so evaluates to 0.