Use spherical coordinates. evaluate xyz dv e , where e lies between the spheres ρ = 4 and ρ = 6 and above the cone ϕ = π/3.

Respuesta :

Set

[tex]x=\rho\cos\theta\sin\varphi[/tex]

[tex]y=\rho\sin\theta\sin\varphi[/tex]

[tex]z=\rho\cos\varphi[/tex]

so that the volume element is

[tex]\mathrm dV=\mathrm dx\,\mathrm dy\,\mathrm dz=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]

The integral is then

[tex]\displaystyle\iiint_Exyz\,\mathrm dV=\int_{\varphi=0}^{\varphi=\pi/3}\int_{\theta=0}^{\theta=2\pi}\int_{\rho=4}^{\rho=6}\rho^5\cos\theta\sin\theta\sin^3\varphi\cos\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\rho[/tex]

[tex]=\displaystyle\left(\int_0^{\pi/3}\sin^3\varphi\cos\varphi\,\mathrm d\varphi\right)\underbrace{\left(\int_0^{2\pi}\cos\theta\sin\theta\,\mathrm d\theta\right)}_0\left(\int_4^6\rho^5\,\mathrm d\rho\right)[/tex]

and so evaluates to 0.