Respuesta :
Answers:
This is a parabolic movement, this means it has an X-component and Y-component, and is described by the following equations:
For the Velocity:
[tex]V_{o}=V_{ox}+V_{oy}[/tex]
[tex]V_{o}=V_{o}cos\theta+V_{o}sin\theta[/tex] (1)
Where [tex]V_{o}=84\frac{m}{s}[/tex] is the initial Velocity and [tex]\theta=15\º[/tex]
[tex]V=V_{ox}+V_{oy}+gt[/tex]
[tex]V=V_{o}cos\theta+V_{o}sin\theta+gt[/tex] (2)
Where [tex]V=0[/tex] is the final Velocity, which in this case is zero and [tex]g=-1.633\frac{m}{s^{2}}[/tex] is the acceleration due gravity in the moon.
For the distance [tex]r[/tex]:
[tex]r=V_{ox}t+x_{o}+\frac{1}{2}gt^{2}+V_{oy}+y_{o}[/tex]
Where [tex]x_{o}[/tex] and [tex]y_{o}[/tex] are the components of the initial position of the ball and we will assume it as zero in our reference system.
Therefore the equation for distance becomes:
[tex]r=V_{ox}t+\frac{1}{2}gt^{2}+V_{oy}[/tex] (3)
And can be written as:
[tex]r=V_{o}cos\theta.t+\frac{1}{2}gt^{2}+V_{o}sin\theta[/tex]
[tex]r=(cos\theta+sin\theta)V_{o}.t+\frac{1}{2}gt^{2}[/tex] (4)
Having this established, let's begin with the answers:
(a) The time of flight for the golf ball
For this case, the equation of the velocity will be useful (equation 2):
[tex]V=V_{o}cos\theta+V_{o}sin\theta+gt[/tex] (5)
Substituting the known values and solving to find [tex]t[/tex]
[tex]0=84\frac{m}{s}cos(15\º)+84\frac{m}{s}sin(15\º)-1.633\frac{m}{s^{2}}t[/tex]
[tex]102.87\frac{m}{s}=1.633\frac{m}{s^{2}}t[/tex]
[tex]t=\frac{102.87\frac{m}{s}}{1.633\frac{m}{s^{2}}}[/tex]
[tex]t=62.99s[/tex] (6) >>>>This is the time of flight for the golf ball
b) The range (distance traveled by the ball)
For this case, the equation of the distance will be useful (equation 4):
[tex]r=(cos\theta+sin\theta)V_{o}.t+\frac{1}{2}gt^{2}[/tex]
Substiting the value of [tex]t[/tex] found on (6):
[tex]r=(cos(15\º)+sin(15\º))84\frac{m}{s}(62.99s)-\frac{1}{2}1.633\frac{m}{s^{2}}}(62.99s)^{2}[/tex] (7)
Solving and finding [tex]r[/tex]:
[tex]r=6480.32m-3239.65m[/tex] (8)
[tex]r=3240.66m[/tex] >>>>This is the range of the golf ball