Respuesta :

ANSWER

[tex] \frac{1}{2} [/tex]

EXPLANATION

The given parametric curve has equation:

[tex]x = {t}^{2} + 2t[/tex]

and

[tex]y = {t}^{2} + 1[/tex]

Let us differentiate each equationtion with respect to t.

[tex] \frac{dx}{dt} = 2t + 2[/tex]

and

[tex] \frac{dy}{dt} = 2t[/tex]

The slope function is given by:

[tex] \frac{dy}{dx} = \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} } [/tex]

This implies that:

[tex] \frac{dy}{dx} = \frac{2t}{2t + 2} [/tex]

At t=1,

[tex] \frac{dy}{dx} = \frac{2(1)}{2(1)+ 2} [/tex]

[tex] \frac{dy}{dx} = \frac{2}{4} [/tex]

[tex] \frac{dy}{dx} = \frac{1}{2} [/tex]

The correct choice is A.