In △ABC, a=31, b=22, and c=18. Identify m∠A rounded to the nearest degree. HELP ME PLEASE!!

Answer:
The measure of angle A is [tex]101\°[/tex]
Step-by-step explanation:
we know that
Applying the law of cosines
[tex]a^{2} =b^{2}+c^{2}-2(b)(c)cos(A)[/tex]
substitute the values and solve for cos(A)
[tex]31^{2} =22^{2}+18^{2}-2(22)(18)cos(A)[/tex]
[tex]cos(A)=[22^{2}+18^{2}-31^{2}]/(2(22)(18))\\ \\cos(A)=-0.193182\\ \\A=arccos(-0.193182)=101\°[/tex]
The measure of m∠A to the nearest degree is 101°.
Using cosine rule, we can find m∠A.
Therefore,
31²= 22² + 18² - 2 × 22 × 18 cos A
961 - 484 - 324 = -792 cos A
cos A = - 153 / 792
A = cos⁻¹ -0.19318181818
A = 101.139591749
A = 101°
Therefore, the measure of m∠A to the nearest degree is 101°.
learn more on triangle here: https://brainly.com/question/25813512