A tile pattern on a wall is made up of two identical parallelograms and three identical triangles. What is the area of the tile pattern? Enter your answer in the box.

Respuesta :

So,

The area of a parallelogram is simply base times height, or BH.  So, the area of the two parallelograms is 2BH.

The area of a triangle is 1/2bh (to distinguish the triangle's b and h from the parallelogram's).  Therefore, the area of the three triangles is 3/2bh.

Adding up all of the areas, we get A = 2BH + 3/2bh.

[tex]total\ blades=\frac{100\ blades}{12in.^2}*\frac{144\ in.^2}{ft.^2}*A_T[/tex]

[tex]\frac{100\ blades}{12in.^2}*\frac{144\ in.^2}{ft.^2}=\frac{1.2*10^2\ blades}{ft.^2}[/tex]

[tex]\frac{2\ ft.}{pace}[/tex]

[tex]A_T=A_Q+A_R[/tex]

[tex]A_Q=\frac{3}{4}(8\ paces*\frac{2\ ft.}{pace})^2=48\ ft.^2[/tex]

[tex]A_R=14\ paces*\frac{2\ ft.}{pace}*7\ paces*\frac{2\ ft.}{pace}=392\ ft.^2[/tex]

[tex]A_T=392+48\approx4.5*10^2\ ft.^2[/tex]

[tex]\frac{1.2*10^2\ blades}{ft.^2}*4.5*10^2\ ft.^2=5.4*10^4\ blades[/tex]

toab1

if this question is for K12 is 448 your correct answer.

18in / 10in/ 14in = 448

I did the test and this is the right answer

I hope this helps.